Wadliwe zasady oceny ryzyka GMO. Spojrzenie historyczne: inżynieria genetyczna i nasze rozumienie fenomenu życia
Poznanie molekularnych mechanizmów dziedziczenia, rozwój biologii molekularnej i możliwości, jakie stwarza tzw. inżynieria genetyczna, to wielkie osiągnięcia nauki w ostatnim stuleciu. Te odkrycia podsyciły nadzieje, że zbliżamy się do rozwiązania zagadki życia i że wkrótce zyskamy narzędzia, aby naturę poprawiać i naginać do naszych potrzeb.
Początkowo dominowało przekonanie, że gen (DNA) jest jedynym i absolutnym determinantem cech fenotypowych organizmu, a relacja między genotypem i fenotypem ma prosty charakter liniowy. Taki uproszczony ogląd życia zawarty był w dogmacie, którego autorami byli Crick i Watson: „DNA [gene] makes RNA, RNA makes protein, a protein makes us.” Jeszcze w czasie trwania projektu Human Genome Project, w ramach którego w 2003 roku ustalono pełną sekwencję DNA zawartego w ludzkim genomie, wydawało się, że poznanie sekwencji genów pozwoli nam zrozumieć istotę życia, poznać przyczyny wielu chorób oraz opracować narzędzia terapeutyczne. Te nadzieje się nie spełniły, a kolejny wielki projekt badawczy pod kryptonimem Encode pozwolił odkryć dalsze, nieoczekiwane poziomy komplikacji w procesie regulacji ekspresji genów i tym samym ujawnił dalszą złożoność fenomenu życia.
W pewnym sensie technologia otrzymywania genetycznie zmodyfikowanych organizmów (GMO) oraz kuszące perspektywy modyfikacji roślin i zwierząt a także „terapii genowej” u ludzi bazują na wczesnym, redukcjonistycznym myśleniu o funkcji genu (jeden gen – jedna funkcja) i nie uwzględniają dalszych odkryć dotyczących złożoności przekazywania informacji genetycznej. To powoduje, że być może ignorujemy pewne zjawiska biologiczne, które towarzyszą modyfikacjom genetycznym i mogą sprawiać, że manipulacje te nie dają jedynie zamierzonych efektów, ale są obarczone niezamierzonymi, ubocznymi skutkami transgenezy.
Należy też pamiętać, że ewolucja wytworzyła gatunki roślin, zwierząt i mikroorganizmów, z których każdy ma odrębną pulę genów. Odległe gatunki nie krzyżują się ze sobą w naturalnych warunkach. Przez tysiąclecia udoskonalanie odmian hodowlanych odbywało się w oparciu o naturalne mechanizmy krzyżowania roślin pokrewnych i selekcji pożądanych cech – bez sztucznej ingerencji w genom roślin. Techniki inżynierii genetycznej znajdują zastosowanie w rolnictwie dopiero od niespełna dwóch dekad; żadne wcześniejsze doświadczenia nie pozwalają dziś przewidzieć, jakie będą tego odległe skutki.
Co to jest GMO i do czego może być wykorzystane
Modyfikacje genetyczne w pierwszej kolejności zostały zastosowane w odniesieniu do mikroorganizmów. Wprowadzenie określonych obcych genów do genomu bakterii, pleśni, drożdży itp. doprowadziło do uzyskania genetycznie modyfikowanych organizmów (GMO), których produkty są pożyteczne dla człowieka, znajdują zastosowanie przede wszystkim w przemyśle czy farmacji. Genetyczne modyfikacje są też podstawowym narzędziem badawczym w naukach biologicznych i medycznych, gdzie służą badaniu funkcji genów i mechanizmów regulujących ich aktywność, ich roli w procesach chorobowych, etc. Takie zastosowania nie budzą większych kontrowersji, przede wszystkim dlatego, że GMO pozostają w obiegu zamkniętym i nie wydostają się do środowiska.
Jednak zastosowanie analogicznych manipulacji genetycznych na roślinach i zwierzętach rodzi wiele nowych problemów i nieoczekiwanych zagrożeń. Najpoważniejsze wątpliwości dotyczą GM roślin uprawnych i zwierząt hodowlanych – raz dlatego, że GMO wkracza do produkcji żywności, dwa – dlatego, że produkcja ta odbywa się w środowisku naturalnym. Obawy dotyczą więc zarówno bezpieczeństwa zdrowotnego jak i zagrożeń środowiskowych.
Genetycznie modyfikowane rośliny uprawne
Pierwsze próby modyfikacji genetycznych roślin uprawnych miały miejsce w latach 80-tych XX wieku i dotyczyły tytoniu, a nie roślin spożywczych. Pierwszym dopuszczonym do spożycia przez ludzi GM produktem był pomidor Flavr Savr, który charakteryzował się przedłużonym okresem przechowywania (1994). Pomidor ten nie odniósł sukcesu komercyjnego – prawdopodobnie wskutek braku akceptacji konsumentów i został wycofany z rynku.
Także i dzisiaj, wbrew powszechnym wyobrażeniom, asortyment modyfikowanych genetycznie roślin uprawnych jest raczej skromny. Są to niemal wyłącznie cztery rośliny: soja, kukurydza, rzepak i bawełna. Nie ma w sprzedaży genetycznie modyfikowanych pomidorów, truskawek ani sałaty. Również takie produkty rolne jak nektarynki, bezpestkowe mandarynki czy pszenżyto, często mylnie określane jako GMO, nie są produktami inżynierii genetycznej – zostały otrzymane za pomocą tradycyjnych metod ulepszania odmian uprawnych lub krzyżówek międzygatunkowych.
W Europie dopuszczono do uprawy jedynie dwie rośliny GMO: kukurydzę MON 810 (Monsanto) oraz ziemniak Amflora (BASF). Kukurydza MON 810 ma wszczepiony gen Cry z pałeczki glebowej Bacillus thuringensis, kodujący białko Bt – toksynę o właściwościach owadobójczych. Z kolei ziemniak Amflora został zmodyfikowany tak, aby nie produkować skrobi amylozowej, a wyłącznie skrobię amylopektynową, przydatną w wielu zastosowaniach przemysłowych (w branżach papierniczej, włókienniczej i klejowej). Amflora jest więc ziemniakiem przemysłowym, ale nie da się wykluczyć, że w przypadkowy sposób może zostać wprowadzona do łańcucha pokarmowego ludzi i zwierząt gospodarskich. Wiele krajów Europy zakazało upraw GM kukurydzy, a niektóre także GM ziemniaka.
Podstawowe rodzaje modyfikacji genetycznych w rolnictwie
Wbrew rozpowszechnionym opiniom, GM odmiany roślin odpornych na suszę i inne zmiany klimatyczne, mogące rosnąć na glebach zasolonych, jak również słynny „złoty ryż” wzbogacony w prowitaminę A – wciąż pozostają w sferze badań laboratoryjnych i nie są dopuszczone do uprawy ani do spożycia. Przemysł biotechnologiczny nie jest zainteresowany komercjalizacją takich GM odmian, które byłyby odporne na suszę, zasolenie gleby, chłód, itp. – ze względu na ich „niedostateczny potencjał marketingowy” [56]. Mimo to zdarza się czytać w prasie, że „złoty ryż uratował miliony dzieci w Azji od ślepoty wywołanej niedoborem wit. A”.
Ponad 90% uprawianych obecnie na świecie odmian GMO zawiera jedynie dwa rodzaje modyfikacji, z których jedna powoduje, że rośliny mają oporność na herbicyd, a druga – zdolność syntezy bakteryjnej toksyny Bt, która jest pestycydem. Rośliny pierwszego typu są oznaczane jako HR (herbicide resistant). Najczęstszą marką handlową roślin HR są odmiany Roundup Ready (RR) produkowane przez firmę Monsanto. Są one odporne na herbicyd Roundup, produkt tej samej firmy. Modyfikacja pozwala stosować opryski herbicydowe w czasie sezonu wegetacyjnego – chwasty giną, a uprawy GMO tolerują herbicyd.
Czy żywność otrzymana z odmian GMO może być szkodliwa?
Trudno dziś odpowiedzieć na pytanie, czy te produkty mogą być szkodliwe dla zdrowia. Wyniki badań naukowych na zwierzętach są niejednoznaczne, a badań epidemiologicznych na ludziach nikt nie prowadził, głównie dlatego, że w krajach obu Ameryk, w których ta żywność pojawiła się najwcześniej i występuje najpowszechniej – nie ma obowiązku oznaczania zawartości GMO na etykietach. Praktycznie więc nie da się ankietować konsumentów w zakresie spożywania przez nich żywności GMO. Zatem teza, że doświadczenia amerykańskich konsumentów wskazują na brak szkodliwości GMO – jest metodologicznie całkowicie nieuprawniona.
Wyniki dotychczasowych badań wskazują, że żywność GMO dopuszczona do obrotu raczej nie powoduje ostrej toksyczności [10-18]. Jeżeli wystąpią jakieś efekty szkodliwe, to dynamika ich pojawiania się będzie taka jak w przypadku narażenia na dym tytoniowy czy azbest – ujawni się po latach. Powstają zatem zastrzeżenia co do metod oceny ryzyka – powszechnie bowiem wykonuje się tylko krótkoterminowe testy na dorosłych zwierzętach laboratoryjnych (badanie toksyczności ostrej i subchronicznej, zazwyczaj testy 90-cio dniowe na szczurach). Przy takim podejściu badawczym subtelne zmiany słabo się ujawniają, albo wcale. Brakuje długoterminowych testów oraz badań wielopokoleniowych [4-9] .
Czy „obcy DNA” może być szkodliwy?
Obecnie wydaje się, że szkodliwe efekty żywności GMO raczej nie są związane z obecnością „obcego DNA” w genomie rośliny, chociaż w świetle coraz większej wiedzy o złożoności ekspresji informacji genetycznej (o czym wspomniano na wstępie), nie można tego całkowicie wykluczyć. Także coraz więcej wiadomo o ubocznych efektach transgenezy: wstawienie obcego genu w DNA rośliny powoduje powstawanie bardzo licznych mutacji, w tym rearanżacji materiału genetycznego oraz tzw. „efektu pozycji” – nowy gen może się znaleźć pod kontrolą niezamierzonych elementów regulacyjnych, a także elementy regulacyjne transgenu mogą spowodować zaburzenia aktywności wewnętrznych genów rośliny [przegląd w: 19]. Synteza białka wprowadzonego do rośliny metodą inżynierii genetycznej, także może prowadzić do nieoczekiwanych interakcji i modyfikacji jego cech, np. nabywania cech alergennych [43-46].
Wbrew zapewnieniom biotechnologów „obcy DNA” znajdujący się w diecie wcale nie musi być całkowicie trawiony w przewodzie pokarmowym ssaków, w tym człowieka [20-26]. Przy podwyższonym pH w żołądku (np. wskutek stosowania leków hamujących wydzielanie kwasu żołądkowego, czy neutralizujacych jego działanie), kwasy nukleinowe nie są trawione i przechodzą do jelita. Wykazano, że fragmenty transgenu (zawierające m.in. elementy wirusowe, czy geny oporności na antybiotyki) mogą przenikać z jelita do krwi, a nawet być wydzielane z mlekiem. Może się to okazać nie bez znaczenia, w świetle ostatnich odkryć, które wykazały, że cząsteczki mikroRNA obecne w diecie (w ryżu) mogą przenikać do komórek człowieka i w aktywny sposób regulować ekspresję ludzkich genów [27]. Jest to dowód, że teza „jesteśmy tym, co jemy” nie jest wcale poetycką przenośnią.
Wciąż też pozostają obawy związane z faktem stosowania w inżynierii genetycznej markerów selekcyjnych w postaci genów oporności na antybiotyki. W świetle rosnącego problemu antybiotykooporności drobnoustrojów chorobotwórczych Komisja Europejska zakazała uwalniania do środowiska GMO posiadających geny oporności na antybiotyki, ze względu na ryzyko przeniesienia tej cechy na bakterie w procesie poziomego transferu genu.
Pestycydy w żywności GMO
O ile nie ma twardych dowodów naukowych, że „obcy DNA” wprowadzony do roślin transgenicznych może być przyczyną szkodliwych efektów u ludzi, coraz więcej pojawia się informacji o szkodliwości pestycydów stosowanych w technologii uprawy typowej dla GMO [28-42]. Trzeba bowiem pamiętać, że większość uprawianych na świecie odmian GMO ma jeden z dwóch (albo oba na raz) rodzajów modyfikacji – odporność na opryski herbicydowe, albo zdolność do produkcji toksyny Bt – bakteryjnego pestycydu. Coraz więcej danych wskazuje, że herbicydy takie jak Roundup mogą powodować wady rozwojowe i problemy z płodnością. Nie wiadomo dotąd, jakie działanie może mieć toksyna Bt w organizmie człowieka. Niepokojący jest z pewnością fakt, że zarówno Roundup jak i toksyna Bt przenikają do krwi człowieka. Jeszcze niedawno sądzono, że toksyna Bt ulega degradacji w pH soku żołądkowego i że ssaki nie mają w jelitach receptorów pozwalających wchłaniać to białko. Dziś już wiadomo, że jest inaczej.
Kanadyjscy badacze przeanalizowali próbki krwi pobrane od 30 ciężarnych kobiet i ich nowonarodzonych dzieci oraz od 39 kobiet nie będących w ciąży. W próbkach poszukiwano dwóch herbicydów (glifosat i glufosynat amonowy), oraz produktów ich rozpadu (kwas 3-MPPA) i białka Bt. Glifosat jest substancją czynną herbicydu totalnego Roundup, którym kilka razy w sezonie wegetacyjnym spryskiwane są rośliny Roundup Ready. Podobne zastosowanie ma glufosynat amonowy. Toksynę Bt wykryto u 93% przebadanych matek i u 80% noworodków, a także u 69% kobiet nie będących w ciąży. Glifosat i glufosynat znaleziono tylko u kobiet nie będących w ciąży (odpowiednio u 5% i 18% badanych). Natomiast kwas 3-MPPA znaleziono we krwi u wszystkich ciężarnych i u wszystkich noworodków (100%) [43]. Te dane wskazują, że żywność wytworzoną w technologii GMO trudno zaliczyć do tak zwanej zdrowej żywności.
Regulacje prawne
Na całym świecie, a szczególnie w Europie, rośnie opór konsumentów przeciwko technologii GMO w rolnictwie i produkcji żywności. Obecnie zakaz upraw kukurydzy MON810 obowiązuje w przodujących krajach rolniczych – Francji i Niemczech, a także w Luksemburgu, Grecji, Austrii, na Węgrzech, w Bułgarii i we Włoszech. Irlandia oraz Walia prawie w 100% objęte są strefą wolną od GMO, zaś Anglia w niemal 50%. Także w Szwajcarii obowiązuje moratorium na uprawy GMO, nałożone w wyniku ogólnokrajowego referendum.
Ramowe stanowisko z 2008 roku mówi, że rząd RP dąży do tego, aby Polska była krajem wolnym od GMO w zakresie rolnictwa. Dotąd to stanowisko nie było skutecznie realizowane w obawie przed sankcjami Komisji Europejskiej. Jednak w sierpniu 2011 prezydent Komorowski zawetował ustawę o nasiennictwie, która zawierała furtkę prawną zezwalającą na uprawy GMO. Minister rolnictwa Marek Sawicki również dziś deklaruje, że będzie starał się ograniczyć zastosowanie upraw GMO w Polsce i w Europie. Jest ku temu sprzyjający klimat, bo w lipcu tego roku Parlament Europejski opracował nowe wytyczne, które mają pozwolić krajom członkowskim samodzielnie decydować o zakazach upraw poszczególnych odmian GMO. Zakazy mogą być motywowane względami ochrony środowiska, względami społecznymi, a nawet kulturowymi. Te przepisy niedługo wejdą w życie.
Opłacalność upraw GMO
Dużo się mówi, że żywność GMO może być tańsza niż produkowana metodami tradycyjnymi. Soja GMO importowana z obu Ameryk jest rzeczywiście tańsza, ale prawdopodobnie głównie dlatego, że pochodzi z wielkoobszarowych, przemysłowych upraw, gdzie zostały do minimum ograniczone koszty pracy ludzkiej. Taki agrobiznesowy model nie pasuje do polskiej wsi, ani nie powinien być promowany w Polsce, jako sprzeczny z zasadami zrównoważonego rozwoju i wykazujący negatywny wpływ na bioróżnorodność. Szczególnie wobec faktu, że polska wieś ma nadmiar rąk do pracy, korzystne jest skierowanie tej siły roboczej w stronę bardziej pracochłonnego rolnictwa ekologicznego i rodzinnego. Taki rodzaj rolnictwa produkuje żywność wysokiej jakości i daje utrzymanie ludności wiejskiej. Natomiast uprawy GMO nieodwołalnie prowadzą do latyfundyzacji wsi, rugowania drobnych rolników z ziemi i wzrostu bezrobocia [48].
Na koszt upraw GMO coraz większy wpływ będzie także miało nasilające się zjawisko powstawania odporności chwastów na herbicydy stosowane w uprawach odmian HT (herbicide tolerant) oraz uodparnianie się szkodników upraw na odmiany Bt [49-56]. Kwestia wydajności upraw GMO i ich opłacalności jest omówiona w kilku raportach różnych instytucji [56-59].
Patenty, korporacje, konsolidacja rynku nasion
W dyskusji nad uprawami GMO nie można zapomnieć, że GM nasiona są przedmiotem ścisłej ochrony patentowej. Powstaje pytanie, czy przemysł biotechnologiczny powinien mieć prawo patentowania organizmów żywych? Są one przecież wytworem ewolucji, a nie człowieka; powinny zatem pozostawać dobrem wspólnym. Zaangażowanie wielkich funduszy ze strony agrobiznesu jak dotychczas, przesądza sprawę: prawo patentowe USA umożliwia patentowanie genomów, genów, sekwencji o funkcjach regulacyjnych, a także segmentów DNA o nieznanej dotychczas funkcji i znaczeniu. GM rośliny są własnością kilku wielkich światowych korporacji, produkujących zarówno nasiona jak i dedykowane do ich uprawy środki ochrony roślin (np. Roundup). Ustawia to plantatorów roślin GM oraz producentów żywności w pozycji podmiotów uzależnionych od właścicieli patentów. Kolejnym problemem jest koncentracja światowego rynku nasion w rękach kilku potężnych koncernów. Monsanto dostarcza dziś rocznie ok. 90% ziarna GM na całym świecie. Równocześnie, nasila się proces przejmowania firm nasiennych przez kilka korporacji, a w niektórych krajach gwałtownie maleje dostępność konwencjonalnego ziarna siewnego [60]. Warto też pamiętać, że koncerny są w posiadaniu patentu „terminator technology” (na szczęście jeszcze nie stosowanego), pozwalającego produkować zboża, które plonują dając sterylne ziarno, niezdolne do kiełkowania. Rodzi się więc pytanie o suwerenność żywnościową społeczeństw w świecie, w którym dominującą rolę zaczynają odgrywać międzynarodowe koncerny.
Problem koegzystencji upraw tradycyjnych i GMO, wpływ na naturalne ekosystemy
Doświadczenia krajów, które najdłużej stosują technologię upraw GMO pokazuje, że skuteczna ochrona przed zanieczyszczeniem jest praktycznie niemożliwa. Światowy rejestr przypadków kontaminacji tradycyjnych upraw i żywności zarówno legalnymi, jak i nieautoryzowanymi odmianami GMO notuje rocznie po kilkadziesiąt takich przypadków (www.GMcontaminationregister.org). Skalę problemu pokazuje przykład Japonii, gdzie nie uprawia się w ogóle odmian GM, a mimo to, dziko rosnące rośliny transgenicznego rzepaku znaleziono w pięciu z sześciu głównych portów i wzdłuż dwóch z czterech badanych poboczy dróg. Prawdopodobnie zanieczyszczenie pochodzi z importowanych nasion, zgubionych podczas transportu do zakładów olejarskich [61]. Udokumentowano także zjawisko krzyżowania się transgenicznego rzepaku (Brassica napus) ze zdziczałymi populacjami blisko spokrewnionych gatunków, B. rapa i B. Juncea [62].
Coraz częściej rolnicy dochodzą odszkodowań w sądach, przykładowo, 21 marca 2011 niemiecki oddział Bayer AG został obciążony odszkodowaniem 136.8 millionów USD dla rolniczej spółdzielni Riceland Foods z Arkansas za zanieczyszczenie przed 4 laty produkowanego przez nich ryżu. Zanieczyszczenie domieszką GMO spowodowało utratę rynków zbytu i możliwości eksportowych.
Wiele obserwacji wskazuje, że uprawy GMO mogą także mieć negatywny wpływ na naturalne ekosystemy powodując genetyczne „skażenie” dzikich roślin pokrewnych oraz oddziałując szkodliwie na drobną faunę (bezkręgowce wodne, glebowe, etc) [63-82].
Uprawy GMO a problem głodu
Zwolennicy upraw GMO przekonują, że technologia ta pozwoli zwiększyć produkcję żywności na świecie. Jednak dane FAO wyraźnie mówią, że zasoby ziemi są w stanie wykarmić obecną, a nawet znacznie większą populację, bez potrzeby uciekania się do GMO. Problem głodu nie bierze się bowiem z braku żywności, tylko z niesprawiedliwej dystrybucji, z biedy, a także ze spekulacji giełdowych i przeznaczania żywności do produkcji biopaliw. Obietnica, że GMO nakarmi głodujących to raczej hasło marketingowe niż rzeczywisty argument. Zresztą w Polsce nie mamy niedoborów żywności, a wręcz przeciwnie – Unia Europejska w ramach wspólnej polityki rolnej wymaga od nas ograniczania produkcji. Uprawy GMO nie są więc w Polsce potrzebne.
Polskie rolnictwo a uprawy GMO
W Polsce trwa debata nad celowością wprowadzenia upraw genetycznie modyfikowanych (GM) zbóż do polskiego rolnictwa. Sprawy te mogą być uregulowane w dwóch aktach prawnych: w ustawie o organizmach genetycznie modyfikowanych oraz ustawie o nasiennictwie. Żadna z tych ustaw nie została uchwalona przed końcem VI kadencji Sejmu, a więc kwestia pozostaje nieuregulowana na poziomie przepisów krajowych (obowiązująca ustawa o GMO z 2001 roku w ogóle nie reguluje kwestii upraw komercyjnych). Dyskusja będzie więc trwać dalej, a rozstrzygnięcia prawne przyniesie dopiero przyszłość.
Trzeba pamiętać, że Polska to blisko 40-to milionowy rynek konsumencki i jeden z największych krajów rolniczych w Europie. Jest to więc pole działania silnego lobby, którego celem jest aby polskich konsumentów przekonać do żywności GMO, rolników zachęcić do uprawy modyfikowanych odmian, a polityków, naukowców i media uczynić swoimi sojusznikami. W zakresie legislacji upraw GMO, nie można więc ulegać naciskom politycznym, naciskom międzynarodowych organizacji gospodarczych oraz kół lobbujących na rzecz wielkich korporacji.
W tej debacie warto pamiętać o omówionych przeze mnie kwestiach takich jak niedoskonałość technik inżynierii genetycznej, niedostatek badań z zakresu oceny ryzyka, potencjalne zagrożenia zdrowotne i środowiskowe oraz problemy socjo-ekonomiczne i polityczne towarzyszące kwestii GM upraw i żywności.
Na zakończenie przytoczę jeszcze najistotniejsze i wciąż aktualne zastrzeżenia, jakie zostały wypunktowane przez Biuro Analiz Sejmowych w przygotowanym przez nie opracowaniu różnych opinii zgłoszonych podczas debaty nad ustawą o GMO w 2010 roku: